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Abstract

In this paper, solving task of text-independent speaker identification, modification of traditional
neural network architecture based on regular convolutional networks proposed by adding multi-
plicative layer similar to one in self-attention. Proposed architecture allows to improve results
for sequential data both for smaller datasets like TIMIT (630 speakers) and larger datasets like
Voxceleb2 (5994 speakers).
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I. Introduction

Speaker identification is a process of iden-
tifying person already known to system by
listening to either some predefined phrase
(text-dependent identification, like calling ’Hey,
Siri’) or arbitrary speech (text-independent).
Implementing this process allows to simplify
machine-human interaction and adds more
recognition capabilities for security systems.
This process is possible due to differences in
human vocal tract that make us sound different,
each voice with it’s own acoustic features [1].

The research on speaker recognition (identi-
fication, verification) is dating back to 1960s.
Since then, number of approaches to acous-
tic features were developed: linear predictive
cepstral coefficients (LPCC), perceptual linear
prediction coefficient (PLP) [2], mel-frequency
cepstral coefficients (MFCC) [3]. Later Gaus-
sian Mixture Model with Universal Background
Model (GMM-UBM) [4] / i-vectors [5] were pro-
posed, becoming to-go solution until recent as-
cent of neural networks. In such systems, neural
network produces single-dimensional vector as
an output called embedding (also known as d-
vector). Similar to i-vectors, d-vectors represent
utterances in a fixed dimensional space. One

of the most intuitive approaches for retrieving
acoustic features from utterance into vector form
is to treat spectrogram of the utterance as an im-
age and apply some visual-based neural network,
like CNN (convolutional neural network). Re-
cently ViTs (Visual Transformers) [6][7] proved
themselves most accurate in computer vision
tasks, but they are computationally demanding
due to high number of parameters. This paper
demonstrates approach to create mix of two ar-
chitectures: CNNs and Tranformers, based on
intuition that accuracy, achieved by transform-
ers, comes from ability to model functions via
basic multiplication operation between sets of
vectors, suchwise it may be possible that multi-
plication, when added to regular convolutional
block, can improve modeling capabilities of the
convolutional networks.

II. Rationale

Convolutional networks were best available so-
lution for visual classification tasks before vi-
sual transformers (ViTs) were introduced. ViTs
reached and currently holding new state of art re-
sults, due to ability to model advanced functions
through attention mechanism. But what atten-
tion is? If we are talking about multiplicative
attention in Transformers, it is often described
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Figure 1: Convolutional wireframe

as a number of parallelized multiplications be-
tween sets of vectors: multiply Queries by Keys,
then apply results to Values.

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (1)

Transformers, according to current state-of-
art achievements, demonstrate that these blocks
are able to model functions at more precise level
than sequences of linear and convolutional layers,
activation functions added. In some models it is
not even necessary to have knowledge transfer
between Queries/Keys and Values, for example
BERT [8] model is a mix of (only self-)attention
blocks (Q==K==V) and feed-forward layers,
yet it proved successful. Self-attention is the
particular case of attention when there is no
knowledge transfer, due to (Q==K==V). This
fact may lead to assumption that modeling capa-
bilities are hidden in very basic part of attention:
matrix multiplication. Common DNN layers like
Dense(Linear) and Convolutional produce linear
outputs; combined with recently most popular
activation function, ReLU, which, in it’s turn,
creates non-linearity by combining two linear
functions: 0 if x < 0 and x if x ≥ 0, final com-
position will behave as an intricate set of linear
functions. On the contrary, multiplication of
inputs by themselves is a non-linear operation
producing power of two outputs, with chained
multiplications increasing power further. Multi-
plicative non-linearity, combined with this intri-

cate, but still linear at ε-neighborhood (where ε

depends on number of parameters/layers) model
of traditional ReLU-based CNN, neural model
can produce better results. Intuitively, com-
bined model is similar to Taylor series in its
approximation approach.

Based on this intuition, we can try to im-
prove accuracy by introducing multiplicative
part to existing convolutional networks archi-
tecture. Traditionally, since Alexnet [9], con-
vnets are constructed using two basic principles:
gradually increasing number of feature planes
(channels) while decreasing dimensions of the
image. There are ways to improve accuracy
through residual connections, bottleneck and
inverted bottleneck blocks, but in the end con-
vnets are transforming image data into a single-
dimensional vector. Usually convolutional block
consists of:

• convolutional layer
• normalization layer
• activation function

In between these blocks some extra layers can be
used, for example pooling. According to assump-
tion, in addition to these layers weighted mul-
tiplication with optional (via trainable weight)
identity was introduced (see Fig. 2). Identity
bypass was added with trainable weight to allow
model choose better pathway in case it’s more
beneficial to use identity instead of weighted
multiplication.
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Figure 2: Extended convolutional block

X =


x11 x12 .. x1n

x21 x22 .. x2n

.. .. .. ..

xn1 xn2 .. xnn

 , ω =


ω11 ω12 .. ω1n

ω21 ω22 .. ω2n

.. .. .. ..

ωn1 ωn2 .. ωnn



WM = X × XT · ω (2)

Weighted multiplication, [×]

Self-attention block in original paper, ’Atten-
tion is all you need’, was designed to work with
directional data, sequences of vector-encoded
words in text. Same directionality can be ob-
served in spectrograms, where each column is
a set of measurements at different frequency
bands and these columns are computed apart
at specific time intervals. (see Fig. 3).

This directionality affects accuracy: with 192
measurements, 64 filter banks per each (array
size 64x192), correct order of multiplication is
X × XT . Transposing first element instead
drops accuracy even below basic level (experi-
ments showed Top1 accuracy dropping to ap-
proximately 67%)

x = (1 − ωres) ∗ x + ωres ∗ [×] (3)

Semaphore-like trainable identity bypass

Figure 3: Spectrogram layout

III. Method

Datasets
Two datasets were used to run experiments with:
TIMIT [10] (630 speakers in dev+test sets) and
Voxceleb2 (5994 speakers). TIMIT is acoustic-
phonetic continuous speech corpus in 8 dialects
of American English, balanced between male
and female voices, recorded with little or no
noise, and Voxceleb2 [11], corpus created by
extracting utterances from video uploaded to
Youtube. Voxceleb2 is a good source of real-life
utterances, sometimes incorrectly labeled (set of
utterances belong to single speaker may contain
dialogues or even different speakers per different
audio samples), thus accuracy can never achieve
same levels as with clean datasets like TIMIT.
Since identification task requires different utterances
and not different speakers, TIMIT corpus was re-
formatted by combining test and dev set into single
pool and extracting random audio samples for the
newly created test set.

Preprocessing
Initially each audio sample is preprocessed: con-
verted to 16kHz mono stream; then stripped of
intervals considered silent, including those in
between words. To define edges between silent
and non-silent intervals, threshold of 30db be-
low peak power is chosen. Each audio sample is
split into smaller slices by using sliding window
1.92 seconds long with 10ms shift (reason behind
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these values is purely mathematical, since ex-
periments showed little difference between slices
with length varying from 1.8 up to 3 seconds).
Records shorter than 0.96s ( 1

2 out of 1.92s) are
discarded, remaining are right-padded with ze-
ros. Out of this pool, some number of random
slices per each sample are selected, and each
slice is converted into melspectrogram with 64
filter banks between 20 and 8000Hz. With frame
equal to 25ms and hop of 10ms melspectrograms
generated have dimensions of 192 by 64 data
points each (ratio 3:1 to simplify further cal-
culations) (see Fig.3). Sampling strategy for
training is choosing up to 50 random samples
per speaker with up to 10 random spectrograms
per each sample; strategy for validation is up
to 20 random samples per speaker with up to
5 random spectrograms per each. Standard
SGD optimizer used with lr=1e-3 and momen-
tum=0.9.

Feature extractor
Identification process in neural network archi-
tectures can be divided into two main parts:

1. Extracting features from preprocessed ut-
terances

2. Using either classifier or metric learning
approach to identify person

Feature extractor is a simple funnel-like con-
volutional layout (Fig 1), with conv layer with
7x7 kernel at top level, similar to resnets, aver-
age pooled with kernel (1,3) to transform 64x192
input to square shape. Following blocks are com-
mon convolutional blocks with 3x3 kernel, batch
norm and activation function (either ReLU or
GeLU). Each block doubles number of channels
and cuts input dimensions in twice. As a result,
n-dimensional vector created per each slice.

Identification
Selecting between metric learning and regular
classifier, second option was chosen due to being
less computationally demanding. Of course it
is always possible to replace classifier with m-
dimensional vector via transfer learning.

Input shape Block description
1x64x192 Conv2d 7x7/1, AvgPool2d (1,3), [×]
128x64x64 Conv2d 3x3/2, AvgPool2d (2,2), [×]
256x16x16 Conv2d 3x3/2, AvgPool2d (2,2), [×]
512x4x4 Conv2d 3x3/2, AvgPool2d (2,2)
1024 > 630 Linear

Table 1: Combined model layout, or Just Another
NETwork, short for Janet ([×] denotes
multiplication layer)

Model Parameters ops*
default, TIMIT 6.85M 30.34G
+ multiplication, TIMIT 6.85M 30.87G
default, VoxCeleb2 12.35M 30.69G
+ multiplication, VoxCeleb2 12.35M 31.22G

*Total mult-adds

Table 2: Model parameters comparison

Evaluation
Optimal criterion for evaluation from practical
standpoint would be to use full utterance, even
if it spans over multiple slices. In this case
longer utterances can achieve better score due
to noise introduced to VoxCeleb2 dataset by ran-
dom appearance of additional voices captured
within dialogues, overlapped voices or even sam-
ples mistakenly added with completely different
speakers (this was encountered few times), in-
stead strictest criterion applied: accuracy calcu-
lated against each slice, randomly chosen from
audio samples’ pool during process of generating
spectrograms.

Augmentations
With modern networks and their practical appli-
cations, augmentations became indispensable in
achieving state-of-art results. For the purposes
of this article, some most resulting augmenta-
tions were implemented: random erase and cut-
mix/mixup. In addition to data augmentations,
label augmentations were also added via label
smoothing.

1. Cutmix
Cutmix/Mixup [12] is a strategy of combin-
ing two images from different classes, either
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CutMix MixUp

CutMix & MixUp

simply partially covering one image with an-
other (cutmix), or by overlaying one image
above another based on opacity (mixup).

2. Random Erase

Random Erase

Random Erase [13] is a strategy of erasing
random part of image during training, usu-
ally rectangular, filling empty space with
constant values.

3. Label Smoothing

Figure 4: Label Smoothing

Label smoothing improves classification ac-
curacy by introducing noise to class labels.

IV. Results

Although model with original convolutional lay-
out demonstrated 99.12% Top1 accuracy for

Figure 5: Top1 validation accuracy, TIMIT

Layout Top1 error Speed*
default convolutional 0.88% 68.4
+ multiplication 0.35% 48.1

*Speed in batches per second, using single RTX 3090

Table 3: Top1 validation error for TIMIT dataset
(630 speakers), best of 300 epochs, batch
size = 32

TIMIT dataset, modified layout with multipli-
cation layer was able to improve it further, to
99.65% without signs of overfitting to initial
data. Another advantage of combined layout is
stable convergence attributed to convnets with-
out any needs to run warmup steps using custom
learning rate.

As for VoxCeleb2, modified model achieved
92.95% Top1 accuracy, improving basic result
of 91.18%.

Figure 6: Top1 validation accuracy, VoxCeleb2
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Layout Top1 error Speed*
default convolutional 8.82% 61.4
+multiplication 6.85% 45.2

*Speed in batches per second, using single RTX 3090

Table 4: Top1 validation error for Voxceleb2
dataset (5994 speakers), 25 epochs, batch
size = 32

V. Conclusion

Models based on multiplicative attention proved
to excel convnets. These models were originally
designed based on intuition that attention me-
chanics can detect relations between elements
spaced apart at significant distance between each
other in sequences. Underlying multiplication
can be the reason why these models are so excep-
tionally good, since this operation produces in-
tricate connections between inputs compared to
regular perceptron. This intuition was applied
to sequential data in audio samples: to detect
relations between measurements across the time
span, by adding simple weighted multiplication.
Results show that this merge is possible and pos-
sesses some benefits: stable conversion, no signs
of overfitting and, of course, improved modeling
capabilities for both rather simple (TIMIT with
630 speakers) and large (VoxCeleb2 with 5994
speakers) datasets. Theoretically it is possible
to apply same ops to regular image classifica-
tion models like ResNets, if images’ data can
be sequentially reorganized similar to ’patches’
approach in Visual Transformers.

Source code is available at
https://github.com/skrbnv/janet
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